Tuesday, August 3, 2010

USSHC Ultimate Underground Data Bunker


USSHC was founded in 2002. However, the process of creating the ultimate underground data bunker actually started in 1999 with the needs of an Internet Service Provider. It was found that truly geographic IP transit could not be fulfilled by the local telephone carriers due to telephone tariffs. The larger Tier 1 Network Service Providers could not provide higher reliability because they depend on the local carriers to deliver the local access to their network. No matter how services were delivered via these traditional means, there was always a single point of failure.

There are solutions that use fiber rings to deliver services, but even fiber rings have single points of failure: The telephone exchange central offices.

The only way to have true IP redundancy is to have different connections from multiple IP transit providers from opposite directions, that use different local fiber networks, from entirely different companies. Most data centers try to meet these needs using fiber paths from carriers not bound by telephone tariffs. However, this “solution” was accompanied by a host of other problems.

In terms of physical security, every data center investigated shared a common building with other tenants. Either the data center was an afterthought and added to an existing building (server closet that grew in to dedicated space), or it was purpose built but with much office space and other common space in the same facility. Both of these types of shared structures increase the risk of collateral damage due to fires in the same building, and to security risks due to the large numbers of people sharing the facility. The best data center fire suppression system in the world doesn’t do a bit of good if the office above it building burns down on top of the data center.

Major shortcomings in physical security were also a recurring theme during the search for a data center. Many facilities share common space with other businesses. Despite partitioning off a building, the common mechanical facilities such as chiller plant, and electrical, are typically shared with other tenants. Obtaining building wide security is difficult not only due to the different tenants sharing common areas, but due to reception areas in buildings that were open to the public and entirely unsecured. Most “secure” server spaces were found to be secured from public areas by walls made of sheet rock! Some sheet rock walls contained windows! We desired something a little more secure than two layers of half inch thick sheet rock, or a single pane of glass.

Despite finding several facilities that all claimed to be “hardened” and able to withstand the force of a tornado with walls made of reinforced concrete, and at least one door made of steel with no windows to the outside world, further investigation revealed that at most, they were only partially below ground, (walk out basement) and all lacked physical plant equipment that was designed to operate during major contingencies. They also shared office space in the same building. Time and time again, it was found that 100% of the data centers had their heat rejection and standby power systems above ground. And in no case were the generators or air conditioning systems “hardened” at all. While the servers may survive if the data center took a direct hit from even a small EF-1 tornado, they would not remain operational for any length of time once the uninterruptible power supply batteries were exhausted. Even if the connectivity and building itself survived, and a generator was tough enough to operate after a storm or tornado, the external cooling would not. Even with power, the servers would quickly overheat, leading to downtime, and possible data corruption or loss.

Some data centers that claimed to be “hardened” were found to require a constant feed of municipal water for on site cooling. With all of the redundancy built in to the site, the whole data center could fail due to a non redundant source of cooling water that could be interrupted due to a pipe break, power outage, earthquake, or even simple maintenance. Or the whole data center could fail due to a water pipe break that would flood the facility with a high pressure torrent of municipal water.

Then there were the data centers located in flood plains. We were shocked at just how many data centers were located in flood plains. More alarming was the “head in the clouds” attitude that most had about the flood plain being entirely acceptable because the data center was on an upper floor.

The harder we looked, and the more we uncovered, the more discouraged we became. Eventually however, USSHC solved all of these problems, and then some.

The idea behind USSHC was to provide a safe, secure place to house an Internet Service Provider that would be immune from any form of disaster, “deep in an Iowa underground bunker” where the power would always stay on, and the servers would always stay connected, fully online, and fully operational, despite what was going on in the outside world.

Since it went live in 2002, the facility has been expanded to allow other companies to share the same level of redundancy, security, and performance.

In 2009, USSHC opened the GWAB (Geek with a box data suite) to offer an economical alternative to our premium data center colocation offerings.

2 comments:

  1. Here some explain about hosting service with security..I have never know about this topic so can't explain..

    uninterruptible power supply

    ReplyDelete

Underground Secure Data Center Operations

Technology based companies are building new data centers in old mines, caves, and bunkers to host computer equipment below the Earth's surface.

Underground Secure Data Center Operations have a upward trend.

Operations launched in inactive gypsum mines, caves, old abandoned coal mines, abandoned solid limestone mines, positioned deep below the bedrock mines, abandoned hydrogen bomb nuclear bunkers, bunkers deep underground and secure from disasters, both natural and man-made.

The facility have advantages over traditional data centers, such as increased security, lower cost, scalability and ideal environmental conditions. There economic model works, despite the proliferation of data center providers, thanks largely to the natural qualities inherent in the Underground Data Centers.

With 10,000, to to over a 1,000,000 square feet available, there is lots of space to be subdivided to accommodate the growth needs of clients. In addition, the Underground Data Centers has an unlimited supply of naturally cool, 50-degree air, providing the ideal temperature and humidity for computer equipment with minimal HVAC cost.

They are the most secure data centers in the world and unparalleled in terms of square footage, scalability and environmental control.

Yet, while the physical and cost benefits of being underground make them attractive, they have to also invested heavily in high-speed connectivity and redundant power and fiber systems to ensure there operations are not just secure, but also state-of-the-art.

There initially focused on providing disaster recovery solutions, and backup co-location services.

Clients lease space for their own servers, while other provides secure facilities, power and bandwidth. They offers redundant power sources and multiple high-speed Internet connections through OC connected to SONET ring linked to outside connectivity providers through redundant fiber cables.

Underground Data Centers company augments there core services to include disaster recovery solutions, call centers, NOC, wireless connectivity and more.

Strategic partnering with international, and national information technology company, enable them to offer technology solutions ranging from system design and implementation to the sale of software and equipment.

The natural qualities of the Underground Data Centers allow them to offer the best of both worlds premier services and security at highly competitive rates.

Underground Data Centers were established starting in 1990's but really came into there own after September 11 attacks in 2001 when there founders realized the former mines, and bunker offered optimal conditions for a data center. The mines, and bunkers offered superior environmental conditions for electronic equipment, almost invulnerable security and they located near power grids.

Adam Couture, a Mass.-based analyst for Gartner Inc. said Underground Data Centers could find a niche serving businesses that want to reduce vulnerability to any future attacks. Some Underground Data Centers fact sheet said that the Underground Data Center would protect the data center from a cruise missile explosion or plane crash.

Every company after September 11 attacks in 2001 are all going back and re-evaluating their business-continuity plans, This doesn't say everybody's changing them, but everybody's going back and revisiting them in the wake of what happened and the Underground Data Center may be just that.

Comparison chart: Underground data centers

Five facilities compared
Name InfoBunker, LLC The Bunker Montgomery Westland Cavern Technologies Iron Mountain The Underground
Location Des Moines, Iowa* Dover, UK Montgomery, Tex. Lenexa, Kan. Butler County, Penn.*
In business since 2006 1999 2007 2007 Opened by National Storage in 1954. Acquired by Iron Mountain 1998.
Security /access control Biometric; keypad; pan, tilt and zoom cameras; door event and camera logging CCTV, dogs, guards, fence Gated, with access control card, biometrics and a 24x7 security guard Security guard, biometric scan, smart card access and motion detection alarms 24-hour armed guards, visitor escorts, magnetometer, x-ray scanner, closed-circuit television, badge access and other physical and electronic measures for securing the mine's perimeter and vaults
Distance underground (feet) 50 100 60 125 220
Ceiling height in data center space (feet) 16 12 to 50 10 16 to 18 15 (10 feet from raised floor to dropped ceiling)
Original use Military communications bunker Royal Air Force military bunker Private bunker designed to survive a nuclear attack. Complex built in 1982 by Louis Kung (Nephew of Madam Chang Kai Shek) as a residence and headquarters for his oil company, including a secret, 40,000 square foot nuclear fallout shelter. The office building uses bulletproof glass on the first floor and reception area and 3-inch concrete walls with fold-down steel gun ports to protect the bunker 60 feet below. Limestone mine originally developed by an asphalt company that used the materials in road pavement Limestone mine
Total data center space (square feet) 34,000 50,000 28,000 plus 90,000 of office space in a hardened, above-ground building. 40,000 60,000
Total space in facility 65,000 60,000 28,000 3 million 145 acres developed; 1,000 acres total
Data center clients include Insurance company, telephone company, teaching hospital, financial services, e-commerce, security
monitoring/surveillance, veterinary, county government
Banking, mission critical Web applications, online trading NASA/T-Systems, Aker Solutions, Continental Airlines, Houston Chronicle, Express Jet Healthcare, insurance, universities, technology, manufacturing, professional services Marriott International Inc., Iron Mountain, three U.S. government agencies
Number of hosted primary or backup data centers 2 50+ 13 26 5
Services offered Leased data center space, disaster recovery space, wholesale bandwidth Fully managed platforms, partly managed platforms, co-location Disaster recovery/business continuity, co-location and managed services Data center space leasing, design, construction and management Data center leasing, design, construction and maintenance services
Distance from nearest large city Des Moines, about 45 miles* Canterbury, 10 miles; London, 60 miles Houston, 40 miles Kansas City, 15 miles Pittsburgh, 55 miles
Location of cooling system, includng cooling towers Underground Underground Above and below ground. All cooling towers above ground in secure facility. Air cooled systems located underground. Cooling towers located outside
Chillers located above ground to take advantage of "free cooling." Pumps located underground.
Location of generators and fuel tanks Underground Above ground and below ground Two below ground, four above ground. All fuel tanks buried topside. Underground Underground
*Declined to cite exact location/disatance for security reasons.