Friday, March 21, 2014



Some things to consider when running a data center

As businesses go increasingly digital, the need for data centers to secure company information is more important than ever before. It is not only tech giants like Google and Facebook that need a place to house their information - businesses across the healthcare, government and industrial sectors are looking to data centers as a solution to their storage needs. But running a data center is not something that can be done impulsively. Whether your company has the funds and scale of operations to occupy its own center or ends up looking into existing facilities, here are some important considerations to keep in mind to maximize an enterprise data center operation.

Consider renewable energy solutions
 
In Hollywood movies, data centers are generally represented as massive, noise-intensive operations that actively drain energy out of whatever area they are occupying. This public perception of such facilities is understandable given that data centers must rely on a constant supply of energy - after all, their functionality depends on remaining active at all times. But just because they harness energy sources does not mean data centers can't function in an environmentally-minded, sustainable way.
Just ask Google, a company that has been dealing with data storage needs ever since it rented its first data storage facility - a closet-sized, 7 foot by 4 foot operation with a mere 30 computers - in 1998, according to CNET. Google has come a long way since then, and so has its dedication to sustainable methods of data center operation. The tech giant now has a vast network of data centers spanning the globe.
What unites Google's facilities is a singular commitment to renewable energy. With renewable energy currently powering more than a third of Google's data storage facilities, the company is always looking for ways to expand the use of solar and wind power, according to its site. Because it is challenging to have a renewable power generator on location, the company did the next best thing: It reached out to renewable energy providers in the area - such as wind farms - and made deals to buy energy from them. Among Google's energy suppliers are wind farms in Sweden and Oklahoma. Through these sources, the company is not only able to maintain solid data room cooling practices, but benefit the local community.   

Have good outside air cooling

When it comes to maintaining an optimal data room temperature, it's best to follow the lead of companies well-versed in data storage. Google and Microsoft are two such businesses, and they both share a commitment to harnessing natural resources to keep their data centers cool.
In Dublin, Microsoft has invested more than $800 million to date in order to build a data center that covers almost 600,000 square feet. The enormous size of the facility would seem to present a major cooling challenge, but the company has been able to surmount that by using fresh air cooling, Data Center Knowledge reported. By building the center in Ireland, where the temperature remains optimal for data room cooling, Microsoft is able to maximize the location as a natural cooling solution - a move that saves significant energy costs while keeping the company environmentally friendly as well. And its commitment to environmentally sound solutions does not end with cooling: the center also recycles 99 percent of the waste it produces.
Google has a similarly cooling-minded approach with its data facility in Finland, which it hopes will be almost completely powered by wind energy by 2015, according to Data Center Knowledge. The wind energy will come from a wind park located nearby. But the center is not waiting until then to implement good temperature practice. Instead of relying on chillers and other machine-based cooling techniques, Google relies on seawater from a nearby Gulf to cool the facility. Its efforts in Finland are part of a broader effort to expand the Google sphere of influence.
"The Google data center in Hamina offers Eastern Finland a tremendous opportunity to jump from the industrial to digital age," said Will Cardwell, a professor at a nearby university.

But just as important as what goes on inside a center is the environment around it. That is because data centers are invariably affected by the physical location in which they are located. With that in mind, here are some more things to look into in order to maximize your data center potential.

Choose the location wisely

Considering that data centers are necessarily connected to the physical environment they inhabit, it is important to pinpoint the best location possible. Data centers are always going to require top-notch capabilities to maintain a good server room temperature, but the ease with which that happens can depend on the location of the center. As always, Google is at the top of the game with regard to location selection. Its Hamina, Finland center is strategically placed near the Gulf of Finland, enabling an easy and natural data room cooling solution.
But Google is not the only company maximizing natural environments for data center growth. Iron Mountain specializes in underground data center solutions, according to Data Center Knowledge. Formerly a storage company for physical records, Iron Mountain already had a 145-acre underground storage facility in a former limestone mine before it got into the data center business. This location turned out to be perfect for data center needs. Blocked from the sunlight and other external heat sources, the underground facility stays at about 52 degrees without any kind of additional cooling function. An underground lake provides further protection against ever needing to bring in a machine cooling system. The company's so-called "data bunker" gained so much popularity that Iron Mountain decided to expand its sphere of operations.

Give back to the community the center is in

Data centers often require a big fleet of staff to operate. Fortunately, they're usually built near communities from which workers can be hired. But as much as data centers plan to benefit from the community they inhabit, it is just as important to look for ways to give back. This kind of behavior encourages connectedness with the community and improves the reputation of the center - and therefore the company - in the public eye.
Google paid special attention to the local community as it developed its Hamina center. When they began mapping out the concept for the center, Google realized that construction would take about 18 months. And so they turned to the locals for help. In the process, they provided steady employment for 800 workers in the engineering and construction sectors, according to Data Center Knowledge. Google's willingness to involve locals in the construction process helped forge a lasting bond between the tech giant and the city.
This bond did not go unnoticed.
"Google's investment decision is important for us and we welcome it warmly," Finnish president Jyrki Katainen said.
And for those who work at the center, life is good.
"No two days are the same as we change our roles around frequently to keep things fresh and new," said Julian Cooper, a hardware operations worker at the facility.

Be prepared to surmount environmental obstacles

In the event of a disaster like a hurricane or earthquake, it is vitally important for all enterprises - especially data centers - to make sure their stock is safe. Iron Mountain understands the principle of environmental preparadness quite well, which is why they offer underground data storage solutions. By storing data underground, Iron Mountain protects it against any conceivable natural disaster. This nature-prove construction is especially important for companies like Marriott, which chose to house data at the Iron Mountain bunker because of the sense of complete security it afforded.
"We have always had a rigorous and constant focus on having disaster preparedness in place," said Marriott operational vice president Dan Blanchard. "Today we have a data center that provides Marriott with a tremendous capability for disaster recovery, and we have a great partner in Iron Mountain."
According to tech journalist David Geer, earthquakes pose a huge threat to data centers in many areas around the world, since they can be difficult to predict and potentially cause large-scale damage. If a company intends to build its facility in an area susceptible to earthquakes, it should apply the most stringent safeguards, including building a center that is capable of withstanding a quake one degree higher than the requirement for the zone it occupies.

No comments:

Post a Comment

Underground Secure Data Center Operations

Technology based companies are building new data centers in old mines, caves, and bunkers to host computer equipment below the Earth's surface.

Underground Secure Data Center Operations have a upward trend.

Operations launched in inactive gypsum mines, caves, old abandoned coal mines, abandoned solid limestone mines, positioned deep below the bedrock mines, abandoned hydrogen bomb nuclear bunkers, bunkers deep underground and secure from disasters, both natural and man-made.

The facility have advantages over traditional data centers, such as increased security, lower cost, scalability and ideal environmental conditions. There economic model works, despite the proliferation of data center providers, thanks largely to the natural qualities inherent in the Underground Data Centers.

With 10,000, to to over a 1,000,000 square feet available, there is lots of space to be subdivided to accommodate the growth needs of clients. In addition, the Underground Data Centers has an unlimited supply of naturally cool, 50-degree air, providing the ideal temperature and humidity for computer equipment with minimal HVAC cost.

They are the most secure data centers in the world and unparalleled in terms of square footage, scalability and environmental control.

Yet, while the physical and cost benefits of being underground make them attractive, they have to also invested heavily in high-speed connectivity and redundant power and fiber systems to ensure there operations are not just secure, but also state-of-the-art.

There initially focused on providing disaster recovery solutions, and backup co-location services.

Clients lease space for their own servers, while other provides secure facilities, power and bandwidth. They offers redundant power sources and multiple high-speed Internet connections through OC connected to SONET ring linked to outside connectivity providers through redundant fiber cables.

Underground Data Centers company augments there core services to include disaster recovery solutions, call centers, NOC, wireless connectivity and more.

Strategic partnering with international, and national information technology company, enable them to offer technology solutions ranging from system design and implementation to the sale of software and equipment.

The natural qualities of the Underground Data Centers allow them to offer the best of both worlds premier services and security at highly competitive rates.

Underground Data Centers were established starting in 1990's but really came into there own after September 11 attacks in 2001 when there founders realized the former mines, and bunker offered optimal conditions for a data center. The mines, and bunkers offered superior environmental conditions for electronic equipment, almost invulnerable security and they located near power grids.

Adam Couture, a Mass.-based analyst for Gartner Inc. said Underground Data Centers could find a niche serving businesses that want to reduce vulnerability to any future attacks. Some Underground Data Centers fact sheet said that the Underground Data Center would protect the data center from a cruise missile explosion or plane crash.

Every company after September 11 attacks in 2001 are all going back and re-evaluating their business-continuity plans, This doesn't say everybody's changing them, but everybody's going back and revisiting them in the wake of what happened and the Underground Data Center may be just that.

Comparison chart: Underground data centers

Five facilities compared
Name InfoBunker, LLC The Bunker Montgomery Westland Cavern Technologies Iron Mountain The Underground
Location Des Moines, Iowa* Dover, UK Montgomery, Tex. Lenexa, Kan. Butler County, Penn.*
In business since 2006 1999 2007 2007 Opened by National Storage in 1954. Acquired by Iron Mountain 1998.
Security /access control Biometric; keypad; pan, tilt and zoom cameras; door event and camera logging CCTV, dogs, guards, fence Gated, with access control card, biometrics and a 24x7 security guard Security guard, biometric scan, smart card access and motion detection alarms 24-hour armed guards, visitor escorts, magnetometer, x-ray scanner, closed-circuit television, badge access and other physical and electronic measures for securing the mine's perimeter and vaults
Distance underground (feet) 50 100 60 125 220
Ceiling height in data center space (feet) 16 12 to 50 10 16 to 18 15 (10 feet from raised floor to dropped ceiling)
Original use Military communications bunker Royal Air Force military bunker Private bunker designed to survive a nuclear attack. Complex built in 1982 by Louis Kung (Nephew of Madam Chang Kai Shek) as a residence and headquarters for his oil company, including a secret, 40,000 square foot nuclear fallout shelter. The office building uses bulletproof glass on the first floor and reception area and 3-inch concrete walls with fold-down steel gun ports to protect the bunker 60 feet below. Limestone mine originally developed by an asphalt company that used the materials in road pavement Limestone mine
Total data center space (square feet) 34,000 50,000 28,000 plus 90,000 of office space in a hardened, above-ground building. 40,000 60,000
Total space in facility 65,000 60,000 28,000 3 million 145 acres developed; 1,000 acres total
Data center clients include Insurance company, telephone company, teaching hospital, financial services, e-commerce, security
monitoring/surveillance, veterinary, county government
Banking, mission critical Web applications, online trading NASA/T-Systems, Aker Solutions, Continental Airlines, Houston Chronicle, Express Jet Healthcare, insurance, universities, technology, manufacturing, professional services Marriott International Inc., Iron Mountain, three U.S. government agencies
Number of hosted primary or backup data centers 2 50+ 13 26 5
Services offered Leased data center space, disaster recovery space, wholesale bandwidth Fully managed platforms, partly managed platforms, co-location Disaster recovery/business continuity, co-location and managed services Data center space leasing, design, construction and management Data center leasing, design, construction and maintenance services
Distance from nearest large city Des Moines, about 45 miles* Canterbury, 10 miles; London, 60 miles Houston, 40 miles Kansas City, 15 miles Pittsburgh, 55 miles
Location of cooling system, includng cooling towers Underground Underground Above and below ground. All cooling towers above ground in secure facility. Air cooled systems located underground. Cooling towers located outside
Chillers located above ground to take advantage of "free cooling." Pumps located underground.
Location of generators and fuel tanks Underground Above ground and below ground Two below ground, four above ground. All fuel tanks buried topside. Underground Underground
*Declined to cite exact location/disatance for security reasons.