Friday, December 18, 2009

Iron Mountain's 22 stories experimental Room 48

Underground Data Centers: Iron Mountain's 22 stories experimental Room 48

This data center is quiet, sans fans -- and energy efficient to the extreme
Lucas MearianDown a road that winds through the rolling hills of western Pennsylvania, just across from a cow pasture, the bucolic scenery of Butler County is interrupted by a high chain-link fence topped with razor wire.

Cars entering the compound are channeled into gated lanes before being searched by a guard. A short distance beyond the security point, the road disappears into a gaping hole in a cliff face. The hole is sealed off by the thick, steel bars of a tall sliding gate controlled by guards carrying semiautomatic pistols. They are protecting a 25-foot-high passage that leads 22 stories down to Iron Mountain's main archive facility, which takes up 145 acres of a 1,000-acre abandoned limestone mine.

Behind steel doors

Among dozens of red steel doors inserted in the rock face along corridors that create an elaborate subterranean honeycomb, you'll find Room 48, an experiment in data center energy efficiency. Open for just six months, the room is used by Iron Mountain to discover the best way to use geothermal conditions and engineering designs to establish the perfect environment for electronic documents.

Room 48 is also being used to devise a geothermal-based environment that can be tapped to create efficient, low-cost data centers. (For information on more companies using geothermal conditions to improve data center efficiency, see "Riding the geothermal wave.")

There is no raised floor in Room 48. Instead, networking wires are suspended above rows of server racks and cooled both by the limestone walls and vents attached to ceiling-mounted red spiral ducts 36 inches in diameter. The HVAC system uses the cool water of an underground lake hundreds of acres in size.

limestone columns
Massive limestone columns support Iron Mountain's man-made caverns
Click to view a slide show of The Underground

Outside light is beamed into the main aisle of the room through a long ceiling tube to reduce heat. Rows of server racks are encased in rectangular metal containers that trap electrical heat and force it up through perforated ceiling tiles, allowing the 55-degree limestone roof to absorb heat that otherwise would build up in the 4,100-square-foot room.

"Limestone can absorb 1.5 BTUs per square foot," Charles Doughty, the vice president of engineering at Iron Mountain, said during a recent tour of the facility by Computerworld. Facts on molecular chemistry and mineral properties roll off 61-year-old Doughty's tongue. He has worked as a technologist and archivist in the tunnels of the one-time mine for 37 years, studying thermodynamics in an ever-evolving effort to create the perfect environment for storing paper and electronic records.

An underground office

Doughty's underground office is adorned with dark wood furniture that's upholstered in the type of rich leather befitting his executive status. The furniture and carpeted floors contrast sharply with a rough-hewn wall of prehistoric rock. The office sits just off a larger room filled with cubicles that also butt up against rock walls, which are painted white to better reflect light and suppress any limestone dust.

Doughty's underground office
Charles Doughty's underground office
Click to see larger view

The Underground, as the mine is called by employees, has its own cafe and a fire department with three engines. Like the other 2,700 workers here, Doughty traverses miles of roadways and tunnels in golf carts. Iron Mountain employs just 155 people in The Underground, the rest work for companies renting space in the facility.

An endurance kayaker who owns a working 30-acre farm and is training for an iron-man competition, Doughty is an idea man in a subterranean environment. He calls it "the best job in the world. I only get to create ideas. Other people do the work to make it happen. "

From mine to storage

Four hundred million years ago, a teeming ocean covered this area. And during a 100-million-year period, billions of tiny crustaceans died, their skeletons settling to the ocean floor, fossilizing and creating layer upon layer of limestone.

In 1902, U.S. Steel began blasting out that limestone for use in the production of metal for skyscrapers, railways and the rest of the nation's booming infrastructure. By 1950, U.S. Steel ceased mining operations and began using the man-made caverns to protect its corporate records from the Cold War-era threat of atomic bombs. The company quickly saw a business opportunity in renting out mine space to other companies and to the U.S. government for vital-records archiving. Thus was born in 1954 the National Storage Company.

More than four decades later, in 1998, it was bought by Iron Mountain, which had itself started under similar circumstances in an iron ore mine in upstate New York. There, in 1951, Herman Knaust opened the Iron Mountain Atomic Storage Corp.

While the Iron Mountain facility in Pennsylvania may best be known as the home to the photographic collection of Bill Gates' Corbis Corp. venture, it also houses the records of countless corporations and highly sensitive government agencies in its array of tunnels.

Doughty is focused on creating the most naturally efficient data center. One of his latest ideas is to drill a shaft from the hillside down to the mine's lake and allow winter air to turn it into a slushy mix that can be used during summer months to dissipate heat in the mine's data centers.

Light is beamed into Room 48 from outside
Light is beamed into Room 48 from outside
Click to see larger view

Unlike other limestone mines which are normally covered in layers of porous sandstone, The Underground was blessed with a roof of shale, which acts as natural umbrella. Water is absorbed into the ground around the mine, instead of through its ceiling. The subterranean lake is an anomaly created when rain or surface water percolates down and around the limestone outcropping through layers of porous soils and rock strata into caverns at the low point of the mine where, at depths of four to eight feet, it spans hundreds of acres. For now, Iron Mountain uses the lake water cooling incoming mine air but does not currently the HVAC systems. But Doughty believes the 50-degree water could eventually be circulated to the data center and back to the lake to naturally expel heat.

"We'd like to get to the point where we expend no energy for cooling," Doughty explained.

While there are four other data centers in the mine, the subterranean facility's dehumidified air and cooler temperatures were initially only seen as advantageous to storing paper, photos, film and microfiche, which under the right conditions could last 2,000 years, according to Doughty. The mine's natural environment wasn't used to disperse heat and reduce energy consumption in data centers -- until Room 48 opened.

Room 48

Room 48 is starkly quiet compared to typical data centers. It creates its own wind through the use of alternating hot-air and cold-air server rack aisles. The high static air pressure differential between the aisles separating rows of server racks naturally causes cold air to drop and hot air to rise through the perforated ceiling tiles and vents that run parallel along air ducts.

Iron Mountain also removed power distribution transformers and computer room air conditioning -- common in other data centers -- from inside the data center and located them outside to further reduce heat. That move also freed up about 30% more space, Doughty said.

By setting the room's return air temperature to 75 degrees, Iron Mountain cut energy consumption for cooling by between 10% and 15% compared with the company's traditional data centers. They operate between 70 and 72 degrees. The natural cooling also allowed Iron Mountain to boost power in the room to 200 watts per square foot, more than 50% above the 125 watts per square foot used in the other data centers located in the mine. Room 48 also cost about 30% less to build than they did because the design favored efficiency and cost reduction over specialty equipment.

For example, instead of buying expensive electrical equipment designed specifically for data centers, Iron Mountain went to the same electrical supply stores any electrician would frequent to purchase K-rated transformers or electrical load centers. "Anything you buy for a computer room is expensive," Doughty said.

Room 48's servers are not yet water cooled
Room 48's servers are not yet water cooled
Click to see larger view

Iron Mountain also installed low-energy T8 fluorescent lamps enclosed in tubes to reduce convection, although most of the time the room is dark because lights are controlled by motion sensors in each aisle.

While the mine's water isn't yet being used to directly cool server racks, Doughty said that will be incorporated into future design changes. He's convinced that all data centers will shift toward water-cooled racks. And he expects that geographical positioning using locations where natural cooling or energy resources can be exploited for efficiency will be the future of new data center construction.

Riding the geothermal wave

Iron Mountain is just one of several such experimental efforts under way using geothermal conditions to power or improve the cooling efficiency of data centers. In February 2008, American College Testing (ACT) in Iowa City, Iowa was the first data center in the U.S. to be awarded the Platinum certification in the Leadership in Energy and Environmental Design (LEED) program, a voluntary rating system for energy efficient buildings overseen by the U.S. Green Building Council.

Three fire trucks are always on call in the mine
The Underground has three fire trucks on call
Click to see larger view

The ACT operation has a 4,000-square-foot raised-floor data center cooled by a geothermal "bore field." The bore field consists of holes drilled into the earth and a closed-loop piping system filled with water or coolant that uses the cool underground conditions to exchange heat.

ACT isn't alone; other companies approved for Platinum status include Citigroup data center in Germany and Advanced Data Centers in Sacramento.

Google is hot on the technology as well and has invested more than $10 million in three companies developing geothermal energy systems. The technology, called Enhanced Geothermal Systems, replicates naturally occurring pockets of subterranean steam and hot water by fracturing hot rock and using the resulting steam to produce electricity.

And in July, Microsoft opened a 700,000-square-foot data center in Northlake, Ill., that uses outside air as part of the cooling system.

Interest in geothermal technology isn't surprising, said Doughty. "Energy costs are increasing exponentially so that the cost to operate the data center is becoming the greatest cost. People who can leverage the geographic location or a subterranean location will achieve the greatest benefit."

1 comment:

Underground Secure Data Center Operations

Technology based companies are building new data centers in old mines, caves, and bunkers to host computer equipment below the Earth's surface.

Underground Secure Data Center Operations have a upward trend.

Operations launched in inactive gypsum mines, caves, old abandoned coal mines, abandoned solid limestone mines, positioned deep below the bedrock mines, abandoned hydrogen bomb nuclear bunkers, bunkers deep underground and secure from disasters, both natural and man-made.

The facility have advantages over traditional data centers, such as increased security, lower cost, scalability and ideal environmental conditions. There economic model works, despite the proliferation of data center providers, thanks largely to the natural qualities inherent in the Underground Data Centers.

With 10,000, to to over a 1,000,000 square feet available, there is lots of space to be subdivided to accommodate the growth needs of clients. In addition, the Underground Data Centers has an unlimited supply of naturally cool, 50-degree air, providing the ideal temperature and humidity for computer equipment with minimal HVAC cost.

They are the most secure data centers in the world and unparalleled in terms of square footage, scalability and environmental control.

Yet, while the physical and cost benefits of being underground make them attractive, they have to also invested heavily in high-speed connectivity and redundant power and fiber systems to ensure there operations are not just secure, but also state-of-the-art.

There initially focused on providing disaster recovery solutions, and backup co-location services.

Clients lease space for their own servers, while other provides secure facilities, power and bandwidth. They offers redundant power sources and multiple high-speed Internet connections through OC connected to SONET ring linked to outside connectivity providers through redundant fiber cables.

Underground Data Centers company augments there core services to include disaster recovery solutions, call centers, NOC, wireless connectivity and more.

Strategic partnering with international, and national information technology company, enable them to offer technology solutions ranging from system design and implementation to the sale of software and equipment.

The natural qualities of the Underground Data Centers allow them to offer the best of both worlds premier services and security at highly competitive rates.

Underground Data Centers were established starting in 1990's but really came into there own after September 11 attacks in 2001 when there founders realized the former mines, and bunker offered optimal conditions for a data center. The mines, and bunkers offered superior environmental conditions for electronic equipment, almost invulnerable security and they located near power grids.

Adam Couture, a Mass.-based analyst for Gartner Inc. said Underground Data Centers could find a niche serving businesses that want to reduce vulnerability to any future attacks. Some Underground Data Centers fact sheet said that the Underground Data Center would protect the data center from a cruise missile explosion or plane crash.

Every company after September 11 attacks in 2001 are all going back and re-evaluating their business-continuity plans, This doesn't say everybody's changing them, but everybody's going back and revisiting them in the wake of what happened and the Underground Data Center may be just that.

Comparison chart: Underground data centers

Five facilities compared
Name InfoBunker, LLC The Bunker Montgomery Westland Cavern Technologies Iron Mountain The Underground
Location Des Moines, Iowa* Dover, UK Montgomery, Tex. Lenexa, Kan. Butler County, Penn.*
In business since 2006 1999 2007 2007 Opened by National Storage in 1954. Acquired by Iron Mountain 1998.
Security /access control Biometric; keypad; pan, tilt and zoom cameras; door event and camera logging CCTV, dogs, guards, fence Gated, with access control card, biometrics and a 24x7 security guard Security guard, biometric scan, smart card access and motion detection alarms 24-hour armed guards, visitor escorts, magnetometer, x-ray scanner, closed-circuit television, badge access and other physical and electronic measures for securing the mine's perimeter and vaults
Distance underground (feet) 50 100 60 125 220
Ceiling height in data center space (feet) 16 12 to 50 10 16 to 18 15 (10 feet from raised floor to dropped ceiling)
Original use Military communications bunker Royal Air Force military bunker Private bunker designed to survive a nuclear attack. Complex built in 1982 by Louis Kung (Nephew of Madam Chang Kai Shek) as a residence and headquarters for his oil company, including a secret, 40,000 square foot nuclear fallout shelter. The office building uses bulletproof glass on the first floor and reception area and 3-inch concrete walls with fold-down steel gun ports to protect the bunker 60 feet below. Limestone mine originally developed by an asphalt company that used the materials in road pavement Limestone mine
Total data center space (square feet) 34,000 50,000 28,000 plus 90,000 of office space in a hardened, above-ground building. 40,000 60,000
Total space in facility 65,000 60,000 28,000 3 million 145 acres developed; 1,000 acres total
Data center clients include Insurance company, telephone company, teaching hospital, financial services, e-commerce, security
monitoring/surveillance, veterinary, county government
Banking, mission critical Web applications, online trading NASA/T-Systems, Aker Solutions, Continental Airlines, Houston Chronicle, Express Jet Healthcare, insurance, universities, technology, manufacturing, professional services Marriott International Inc., Iron Mountain, three U.S. government agencies
Number of hosted primary or backup data centers 2 50+ 13 26 5
Services offered Leased data center space, disaster recovery space, wholesale bandwidth Fully managed platforms, partly managed platforms, co-location Disaster recovery/business continuity, co-location and managed services Data center space leasing, design, construction and management Data center leasing, design, construction and maintenance services
Distance from nearest large city Des Moines, about 45 miles* Canterbury, 10 miles; London, 60 miles Houston, 40 miles Kansas City, 15 miles Pittsburgh, 55 miles
Location of cooling system, includng cooling towers Underground Underground Above and below ground. All cooling towers above ground in secure facility. Air cooled systems located underground. Cooling towers located outside
Chillers located above ground to take advantage of "free cooling." Pumps located underground.
Location of generators and fuel tanks Underground Above ground and below ground Two below ground, four above ground. All fuel tanks buried topside. Underground Underground
*Declined to cite exact location/disatance for security reasons.